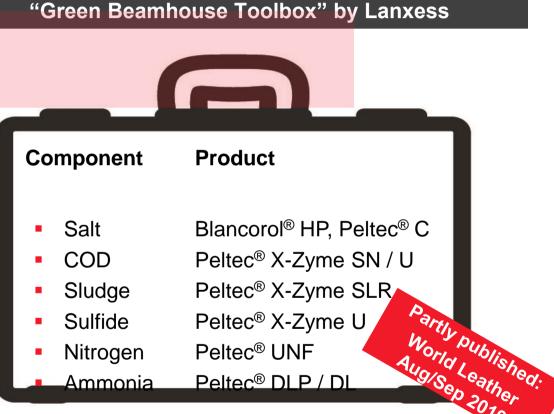

### Green Beamhouse – A toolbox for cleaner Waste water

P. Rajasekaran, Christopher Henzel, Marc Hombeck

### Agenda

- 1. Introduction
- 2. Green Beamhouse Lanxess' roadmap for cleaner waste water
  - a. TDS/Salt reduction: The Peltec C process
  - b. COD reduction: The Peltec X-Zyme process
  - c. Sludge reduction: The Peltec X-Zyme SLR process
- 3. Details Green Beamhouse A Life Cycle Assessment (LCA) of the X-Zyme process






# Sustainability has become one of the mega-trends – also for leather production







### Green Beamhouse – a toolbox for improving waste water by chemical recipes



Target of lower waste in waste water can be achieved in different ways

#### **Process-based improvements**

Waste water improvements which require change of tannery processes or different mechanical processes, e.g.

- Fresh hide utilization / Brine curing CLRI
- Green fleshing
- Lime recycling
- Hair saving process
- Lime splitting

#### **Product-based improvements**

Waste water improvements which require changes of the recipe. Changes can significantly impact all relevant waste-water components, for India e.g.

- TDS
- COD

#### Green Beamhouse Toolbox

Sludge

# Salt Improvement: Avoidance of pickle or utilization of a low-salt pickle



#### **General idea / theory**

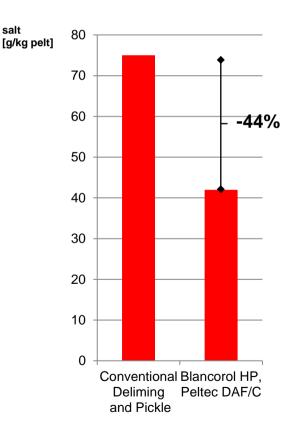
#### Origin of salt

- Largest amount of salt derives from preservation (salting) of raw-hides
- Second largest salt-addition is during pickling, ending up in the waste water

#### How to avoid salt

- Utilization of fresh hides
- Avoidance of pickle by switching to specific organic tanning agents (e.g. X-Tan<sup>®</sup>)
- Reduction of pickle-salt addition by utilization of Blancorol<sup>®</sup> HP

#### **LXS product solution**


#### Peltec<sup>®</sup> C /DLP

- Deliming with Peltec<sup>®</sup> C or Peltec<sup>®</sup>
   DLP reduces salt application
- Pickling with Peltec<sup>®</sup> C combined with Blancorol<sup>®</sup> HP does not require additional salt

#### Blancorol<sup>®</sup> HP

- Blancorol<sup>®</sup> HP helps to reduce salt requirements to 3,8 Bé (std: 6-8 Bé) → less salt in waste water
- 1.5 to 2% Blancorol<sup>®</sup> HP (fully) replaces sulfuric acid plus partly formic acid
- Blancorol<sup>®</sup> HP enables earlier chrome addition and reduces pickling time <1 hour</li>

#### Impact of Peltec<sup>®</sup> C, Blancorol<sup>®</sup> HP



### Low salt Deliming Process Peltec<sup>®</sup> C and Blancorol<sup>®</sup> HP save salt and water



#### **Application Details**

- Pelt splitting recommended
- Peltec<sup>®</sup> C to be used as single deliming agent
- Bating at pH 8.5
- Best results in combination with Blancorol<sup>®</sup> HP pickle process
- No wash after deliming, only float reduction
- Float Bé of 4° required, can be adjusted with Peltec<sup>®</sup> C
- Addition of Blancorol<sup>®</sup> HP as replacement for sulfuric acid
- Application of CTS at penetration of pickle of ca. 50%, Gain: More time for CTS penetration

|          | Product             | Standard<br>process | Peltec C<br>process | Δ - TDS | Δ - water |
|----------|---------------------|---------------------|---------------------|---------|-----------|
| Deliming | water               | 50%                 | 50%                 | x       | x         |
|          | ammonia sulfate     | 2.5%                | 0%                  | -2.5%   |           |
|          | PELTEC C            | 0%                  | 1.5%                | +1.5%   |           |
|          | Na- bisulite        | 0.3%                | 0.3%                |         |           |
|          | bating agent        | 0.4%                | 0.4%                |         |           |
| wash     | water               | 200%                | 0%                  |         | -200%     |
| Pickle   | water               | 50%                 | 0-20%               |         | -30%      |
|          | NaCL                | 6%                  | 0%                  | -6%     |           |
|          | sulfuric acid       | 1.3%                | 0%                  |         |           |
|          | <b>BLANCOROL HP</b> | 0%                  | 1.7%                |         |           |
|          | CTS                 | 6%                  | 6%                  |         |           |
|          | MgO                 | 0.5%                | 0.5%                |         |           |

Standard vs. Peltec<sup>®</sup> C process = 70kg/t less salt

| Savings | -7% | -230% |
|---------|-----|-------|
|---------|-----|-------|

### X- Blue Tanning, Pickle Free Tanning system A Two Step Tanning Process with salt savings



#### 1. X-Tan<sup>®</sup> Wet White Process

- Pelt splitting recommended
- Salt fee deliming with Peltec<sup>®</sup> DLP
- Bating at pH 8.5
- No pickle required → no addition of NaCl required
- Tanning process starts at pH 8.5 and ends at pH 4.5

#### 2. X-White Chroming Process

- Shaving of wet white
- Reduction of products/salt due to 1/3 less hide weight
- Start retannage with chrome tannage
- No pickle required → no addition of NaCl required

|          | Product         | Standard<br>process |
|----------|-----------------|---------------------|
| Deliming | water           | 50%                 |
|          | ammonia sulfate | 2.5%                |
|          | Na- bisulphite  | 0.3%                |
|          | bating agent    | 0.4%                |
| wash     | water           | 200%                |
| Pickle   | water           | 50%                 |
|          | NaCl            | 6%                  |
|          | sulfuric acid   | 1.3%                |
|          | CTS             | 6%                  |
|          | MgO             | 0.5%                |
|          | Total Salt:     | 17%                 |

Standard vs. X-Blue process = 35% less salt

|                | Product              | X-Blue<br>Process |
|----------------|----------------------|-------------------|
| Deliming       | water                | 50%               |
|                | Peltec DLP           | 2.0%              |
|                | Na-                  |                   |
|                | bisulphite           | 0.3%              |
|                | bating agent         | 0.4%              |
| wash           | water                | 200%              |
| X-Tan Tannage  | water                | 50%               |
|                | X-Tan W              | 3%                |
|                | Tanigan HS           | 3%                |
|                | formic acid          | 1%                |
| shaving        | 1/3 weight reduction |                   |
| Retannage      |                      |                   |
| Chroming       | formic acid          | 0.5%              |
|                | СТЅ                  | 6%                |
| Neutralisation | customer             |                   |
| Retannage      | customer             |                   |
|                |                      |                   |
|                | Total Salt:          | 11%               |

# **COD Improvement:** Removal of hide components and reduction of surfactants by enzymatic process



#### **General idea / theory**

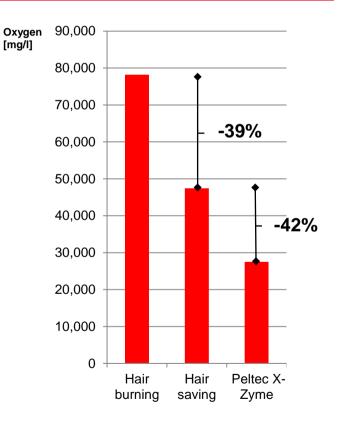
#### **Origin of COD**

- Organic matter of raw hides which is washed out during beamhouse process
- Organic beamhouse chemicals added to the process and finally end up in waste-water as COD

#### How to avoid COD

- Avoidance of unnecessary hydrolysis of the hide / switching to hair saving process
- Reduction of organic chemical additives by switching to enzymatic process

#### LXS product solution


#### Peltec<sup>®</sup> X-Zyme SN

- Enzyme-based product ensuring the mild washing out of hyaluronic acid during soaking
- Peltec X-Zyme SN reduces otherwise required surfactants that end up as COD in waste water

#### Peltec<sup>®</sup> X-Zyme U

- Enzyme-based product which cleaves the hair roots forming easily filterable hair
- Subsequent hair saving process allows significant reduction of COD

#### Impact of Peltec<sup>®</sup> X-Zyme SN / U



### **COD Improvement** Peltec<sup>®</sup> X-Zyme Process



#### Soaking: Peltec<sup>®</sup> X-Zyme SN

#### Background

- Key target is removal of non-collagenous proteins
- Hyaluronic acid (HA) is locked in place by glucose amino glycans (GAGs) of dermatan sulfate proteoglycan (DSP)

#### Process

- Cleavage of GAGs allows easy removal of HA
- No proteolytic activity of enzyme: No damage of collagen during prolonged soaking or accidental overdosing

#### **COD** reduction

- No application of wetting agent
- Strongly reduced amount of emulsifier required
- No degreasing during soaking
- Application of Peltec<sup>®</sup> BLE-F for grease reduction

#### Unhairing: Peltec<sup>®</sup> X-Zyme U

#### Background

- No pulping of hair improves the waste water
- Reduction of lime: moderate swelling causing less wrinkles

#### Process

- Peltec<sup>®</sup> X-Zyme U selectively degrades basal membrane of epidermis and loosening the hair roots
- Hair loosening is achieved after ca. 45-60 min; enzymatic activity is completely stopped by pH-increase
- Addition of lime results in immunization of hair

#### **COD** reduction

- Subsequent (semi) hair-saving process with reduced amount of lime removes residual hair with moderate swelling
- Replaces application of organic sulfur compound (mercaptan), which increases the COD
- Application of lipase Peltec<sup>®</sup> BLE-F does not contribute to COD

# **Sludge Improvement:** Removal of inorganic sludge by replacement of lime during opening up



#### **General idea / theory**

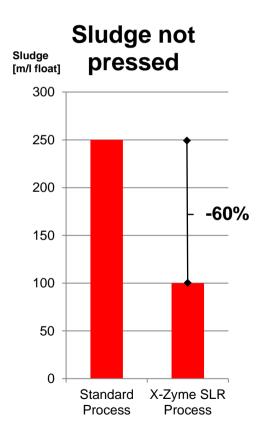
#### **Origin of Sludge**

- Organic sludge results from unhairing: hair and pulped hair plus epidermis. Furthermore it originates from dirt / dung and scrapped of sub cutis
- <u>Inorganic sludge</u> mainly results from hydrated lime

#### How to avoid Sludge

- Employment of hair saving process incl. hair filtering, green fleshing
- Replacement or reduction of lime by alternative products

#### LXS product solution


#### Peltec<sup>®</sup> X-Zyme SLR

- Replacement for hydrated lime
- Enzyme-based product
- Ensuring good "opening up" of collagen
- Uniform soaking

#### Peltec<sup>®</sup> X-Zyme U

- Enzyme based unhairing auxiliary
- Improved hair saving process with hair filtering

#### Impact of Peltec<sup>®</sup> X-Zyme SLR



### **Sludge reduction Peltec<sup>®</sup> X-Zyme SLR process**

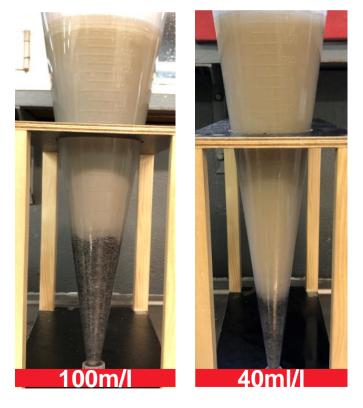


#### Lime free opening up results in significant sludge reduction

#### Background

- Enzymatic lime free opening up of the fiber structure
- Strong selective action on dermatan sulfate proteoglycan  $\rightarrow$  opening up process

#### Process


- Opening up moved to soaking process  $\rightarrow$  Peltec<sup>®</sup> Zyme SLR applied in the soaking
- Small amount of lime (0.8%) added for immunization
- Reduced offer of swell regulator required due to lower alkalinity
- Reduced volume of deliming agent required due to less lime added
- Full sustainability results achieved in combination with Peltec® X-Zyme U

#### Sludge reduction and more advantages

- Significantly less sludge with good biodegradability achieved (ca. 40-70% reduction)
- Improved COD vs. standard X-Zyme process
- Crust with soft round handle
- Good physical properties
- Excellent waterproofing conditions







# **Green Beamhouse:** Lanxess' roadmap to cleaner waste water, further investigation by LCA for X-Zyme



#### Summary: Reduction factors of critical waste water components

| Waste water component        | Product                                          | Reduction factor |
|------------------------------|--------------------------------------------------|------------------|
| <ul> <li>Salt</li> </ul>     | Blancorol <sup>®</sup> HP, Peltec <sup>®</sup> C | -44%             |
| - COD                        | Peltec <sup>®</sup> X-Zyme S, U                  | -42%             |
| <ul> <li>Sludge</li> </ul>   | Peltec <sup>®</sup> X-Zyme SLR                   | -60%             |
| <ul> <li>Sulfide</li> </ul>  | Peltec <sup>®</sup> X-Zyme U                     | -24%             |
| <ul> <li>Nitrogen</li> </ul> | Peltec <sup>®</sup> UNF,                         | -20%             |
| <ul> <li>Ammonia</li> </ul>  | Peltec <sup>®</sup> DLP / DL                     | -74%             |

#### Next step: LCA X-Zyme process

- A Life Cycle Assessment (LCA) describes the impact of a complete BH-process, not of single products. It looks at all relevant compartments:
  - Fossil energy
  - Global warming
  - Eutrophication
  - Toxicity
  - Acidification
  - Photo chemical ozone formation
  - Agricultural land use
  - Fresh water use
  - Solid waste
- In comparative LCA only the differences caused by process shift are analyzed and reviewed

# **Comparative LCA:** Peltec<sup>®</sup> X-Zyme process offers significant reduction of chemicals



#### Recipe-comparison between Standard- and X-Zyme process

| Production<br>step | Material                        | Standard process [% of hide weight] | X-Zyme process<br>[% of hide weight} | Delta  |
|--------------------|---------------------------------|-------------------------------------|--------------------------------------|--------|
| Soaking            | Surfactant                      | 0,20%                               | 0,10%                                | -0,10% |
|                    | Protease                        | 0,50%                               |                                      | -0,50% |
|                    | Peltec X-Zyme S                 |                                     | 0,12%                                | 0,12%  |
|                    | Preservative                    | 0,15%                               | 0,15%                                | 0,00%  |
| Liming             | Surfactant                      | 0,10%                               |                                      | -0,10% |
|                    | Thioglycolic acid               | 0,80%                               |                                      | -0,80% |
|                    | NaHS                            | 1,00%                               | 1,00%                                | 0,00%  |
|                    | Ca(OH) <sub>2</sub>             | 3,00%                               | 2,50%                                | -0,50% |
|                    | Na <sub>2</sub> S               | 2,50%                               | 1,00%                                | -1,50% |
|                    | Phosphate                       | 0,34%                               | 0,34%                                | 0,00%  |
|                    | Na <sub>2</sub> CO <sub>3</sub> |                                     | . 0,20%                              | 0,20%  |
|                    | Peltec X-Zyme U                 |                                     | 0,08%                                | 0,08%  |

#### **Comparative LCA**

- In this example a semi hair saving (tannery std.) and a X-Zyme hair saving process were compared
- Recipes are customer specific, but principles apply to virtually all tanneries
- All values derive from full size production trials
- Both processes are suitable for upholstery and shoe-upper leather
- Net-reduction of chemicals are 30kg / ton of pelts
- Significant improvement of waste water regarding COD, BOD, sulfide

Published: International Leather Maker Nov/Dec 2017

### **Comparative LCA:** Peltec<sup>®</sup> X-Zyme process leads to beneficial results in almost all impact categories



8.5

Induce

d

14

58

40

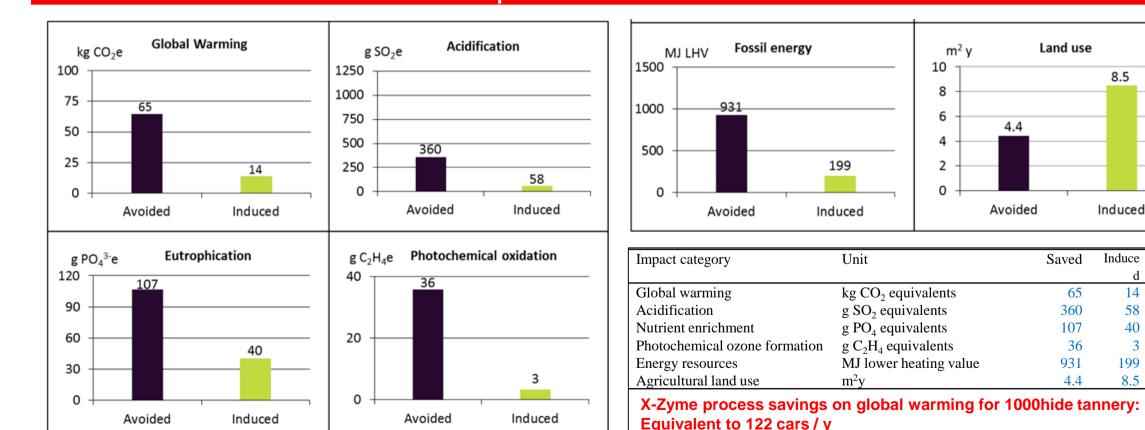
199

8.5

3

Net

50


302

66

32

731

-4.1



#### Comparison of waste water values



### How to improve waste water

Process changes (e.g. hair saving) have large effects on waste water (  $\searrow$ 

Green Beamhouse offers further improvements by recipe changes



Peltec X-Zyme process is the flagship for waste water improvements (



# Quality avoids waste



# **Sulfide Improvement:** Replacing sulfide containing reduction agents by enzymatic unhairing system

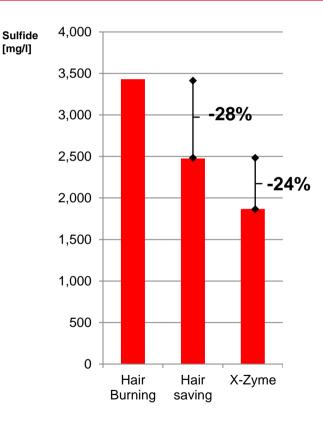


#### **General idea / theory**

#### Origin of sulfide

 Sulfides are added for unhairing in the form of Na<sub>2</sub>S, NaHS or mercaptans

#### How to avoid sulfide


- Reduce required sulfide-volume by switching from hair burning to hair saving process
- Switching to a non-sulfide unhairing system (e.g. oxidative unhairing)
- Reduction of sulfide addition by utilizing enzymatic unhairing additives

#### LXS product solution

#### Peltec X-Zyme U

- Enzyme-based product cleaving the hair roots. Hereby partly substituting sulfide action and leading to less required sulfide
- Improved removal of hair roots leading to cleaner grain
- Pelts are reported to be flatter and smoother

#### Impact of Peltec X-Zyme S/U



# Nitrogen Improvement: Introduction of lime recycling and utilization of amine-free swell regulators

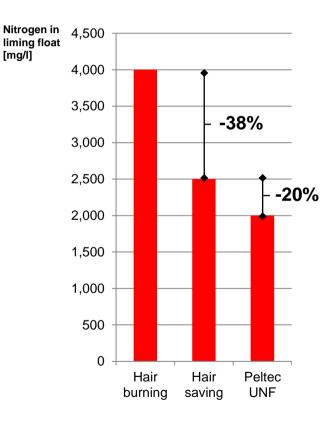


#### **General idea / theory**

#### Origin of nitrogen

- Nitrogen derives from proteins of the raw hides ending up in the waste water
- Swelling regulators in liming are traditionally based on amines

#### How to avoid nitrogen


- Reduce amines from hides:
  - Liming: Switch to hair saving
  - Pickle: Shorten time and reduce temperature to avoid hydrolysis
- Introduce lime-recycling system which re-utilizes liming float including swell regulators
- Utilization of nitrogen-free swell regulators

#### LXS product solution

#### **Peltec UNF**

- Product is based on patentapplied nitrogen-free chemistry: No nitrogen is added to the float
- Product regulates the swelling during liming process and ensures good opening up
- No extensive plumping leads to reduced growth marks and belly draw as well as better removal of hair roods which results in clean pelts
- Cost competitive versus traditional products

#### Impact of Peltec X-Zyme S/U



### **Ammonia Improvement:** Deliming with ammoniafree deliming agents



#### Origin of ammonia

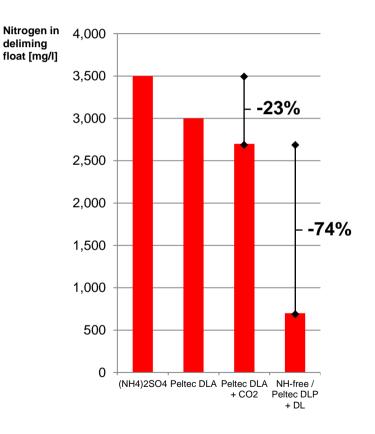
 Ammonia is added as a standard deliming agent to buffer the pelt after liming

#### How to avoid ammonia

- Utilization of ammonia-free deliming agents significantly reduce the nitrogen content in the waste water
- Current solutions (boric acid / dicarboxylic acids) have HSEQ-/ performance disadvantages

#### LXS product solution

#### **Peltec DLA**


 Ammonia-reduced deliming agent which can be combined with CO<sub>2</sub> deliming

#### Peltec DLP / DL

- Products are completely free of nitrogen salts and ammonia compounds
- Peltec DLP quickly and uniformly penetrates even full substance pelts, time can be adjusted by addition of Peltec DL

#### Impact of Peltec X-Zyme S/U

Eneraizina Chemistr



## **Comparative LCA:** X-Zyme process shows significant reduction of waste water values



#### **Comparison of waste water values**

- Common waste water value measurement performed on soaking and liming floats
- Hides were washed before soaking to exclude variable load of dirt attached to the hides
- Pollution of beamhouse waste water can be reduced by up to 50%

|                                                                      | Unit                        | Conventional process | X-Zyme process |
|----------------------------------------------------------------------|-----------------------------|----------------------|----------------|
| BOD after soaking                                                    | kg/m3                       | 14,9                 | 4,7            |
| BOD after unhairing/liming                                           | kg/m3                       | 23,1                 | 12,9           |
| COD after soaking                                                    | kg/m3                       | 24,2                 | 12,0           |
| COD after unhairing/liming                                           | kg/m3                       | 54,0                 | 25,5           |
| Total nitrogen after liming                                          | kg/m3                       | 4,0                  | 2,5            |
| Sulfide after unhairing/liming * Given per tonne of hides (the funct | <b>kg/m3</b><br>ional unit) | 3,4                  | 1,9            |



# **Comparative LCA:** X-Zyme process savings on global warming equivalent to 122 cars / y



#### Environmental savings put in perspective for mid-size tannery (1000h/d)

• **Global warming:** 50kg CO<sub>2</sub> eq. per ton of salted hides

=> Impact mid-size tannery (1.000 hides/day) is equivalent to 122 cars/y\*

- Fossil energy: 730 MJ LHV (lower heating value)
- Land use: 4.1m<sup>2</sup>y
  - => 180 MJ/m2y is the gain of the additional land use.
  - => This, compared to the yield achieved for bio-ethanol, outperforms the savings by **16 times**\*\*

\* 142g/PKm CO $_2$  eq., Umwelt Bundesamt, 1,5P/Car, 20.000Km/y

\*\* FOA of United Nations 2008: 11MJm<sup>2</sup>y for bioethanol



# LANXESS Energizing Chemistry

